Phase-change material filled hollow magnetic nanoparticles for cancer therapy and dual modal bioimaging.
نویسندگان
چکیده
To develop carriers for anti-cancer drug delivery, this study reports a biocompatible and thermal responsive controlled drug delivery system based on hollow magnetic nanoparticles (HMNPs). The system is constructed simply by filling the hollow interiors of HMNPs with a phase-change material (PCM), namely, 1-tetradecanol, which has a melting point of 38 °C. The system achieves near "zero release" of both hydrophobic paclitaxel (PTX) and hydrophilic doxorubicin hydrochloride (DOX) and precise "on" or "off" drug delivery in vitro to efficiently induce cell apoptosis. Furthermore, the system displays both infrared thermal imaging and magnetic resonance imaging properties. More importantly, the system demonstrates great potential for thermo-chemo combination cancer therapy in vivo when an alternating magnetic field is applied.
منابع مشابه
Facile preparation of uniform FeSe2 nanoparticles for PA/MR dual-modal imaging and photothermal cancer therapy.
Recently, magnetic photothermal nanomaterials have emerged as a new class of bio-nanomaterials for application in cancer diagnosis and therapy. Hence, we developed a new kind of magnetic nanomaterials, iron diselenide (FeSe(2)) nanoparticles, for multimodal imaging-guided photothermal therapy (PTT) to improve the efficacy of cancer treatment. By controlling the reaction time and temperature, Fe...
متن کاملMesoporous silica nanoparticles for 19F magnetic resonance imaging, fluorescence imaging, and drug delivery† †Electronic supplementary information (ESI) available: Detailed synthetic procedure, experimental procedure and Fig. S1–S7. See DOI: 10.1039/c4sc03549f Click here for additional data file.
Multifunctional mesoporous silica nanoparticles (MSNs) are good candidates for multimodal applications in drug delivery, bioimaging, and cell targeting. In particular, controlled release of drugs from MSN pores constitutes one of the superior features of MSNs. In this study, a novel drug delivery carrier based on MSNs, which encapsulated highly sensitive F magnetic resonance imaging (MRI) contr...
متن کاملMesoporous silica nanoparticles for 19F magnetic resonance imaging, fluorescence imaging, and drug delivery.
Multifunctional mesoporous silica nanoparticles (MSNs) are good candidates for multimodal applications in drug delivery, bioimaging, and cell targeting. In particular, controlled release of drugs from MSN pores constitutes one of the superior features of MSNs. In this study, a novel drug delivery carrier based on MSNs, which encapsulated highly sensitive 19F magnetic resonance imaging (MRI) con...
متن کاملParamagnetic gold nanostructures for dual modal bioimaging and phototherapy of cancer cells.
Paramagnetic gold nanostructures were synthesized by combining the paramagnetism of gadolinium with the plasmonic properties of gold nanoparticles and used for dual modal (MRI and optical) imaging and phototherapy of breast cancer cells.
متن کاملFeMn2O4 nanoparticles coated dual responsive temperature and pH-responsive polymer as a magnetic nano-carrier for controlled delivery of letrozole anti-cancer
Objective(s): For cancer cells, an efficient and selective drug delivery vehicle can remarkably improve therapeutic approaches. This paper focuses on the synthesis and characterization of magnetic MnFe2O4 NPs and their incorporation in a dual temperature and pH-responsive polymer, which can serve as an efficient drug carrier. Materials and Methods: MnFe2O4 NPs were synthesized by chemical co-pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 7 19 شماره
صفحات -
تاریخ انتشار 2015